Because it's Possible

  • TFI tDCS Friday

    If you're wondering why we have crazy green fonts all over the place, you're in good company.

    Continue reading

  • EEG Primer - Part 3

    Risks

    The EEG test is completely safe and painless. The patient does not feel any sort of discomfort and there are no risks associated with an EEG.

    Some EEG’s do not have any stimuli which may be useful in detecting abnormalities. Stimuli like flashing light may be added so that abnormalities become apparent.

    If the patient is suffering from epilepsy or has some other sort of seizure disorder, the stimuli presented, such as a flashing light or some sort of sound, may result in a seizure. The technician must be trained to manage such situations before performing the EEG.

    Preparation

    Following steps must be taken to ensure that EEG gives accurate results

    1. Make sure that you hair is clean on the day the EEG is performed. There is no product in your hair like sprays or gels.
    2. In case your doctor has advised not to take any prescribed medicine before the test, make sure that you haven’t. Also, a list of medications that your take should be given to the technician as well that is performing the test.
    3. Do not eat and drink food that contains caffeine for a minimum of 8 hours prior to the test.
    4. As you might have to sleep and relax during the test, the doctor will advise you to sleep as little as possible before the night of the test. During the test you might also be given sedatives so that you relax.
    5. After the test is over, you can carry on with your regular routine. If a sedative was given to you in might take a while for it to get out of your system. So you will have to bring someone along who will take you home after the procedure. Make sure you rest till the effect of the medication wears off.

    Procedure

    The test only takes about 30-60 minutes. The procedure starts with you lying on the table or the bed, the technician will mark the places where the electrodes will be placed, the area will be scrubbed with a special liquid so that high quality recording is done. 20 small sensors are attached to your scalp by the technician. Brain activity is picked up by these sensors also known as electrodes, and is then sent to the machine by the neurons. They are either displayed on the monitor screen of the computer or are recorded as patterns of lines on moving paper. The electrical activity passing between your skin and the electrodes is very low, so your skin will not feel any sort of discomfort.

    The technician will ask you to relax with your eyes open at first, and closed after. You will have to breathe deeply and might have to react to a stimulus, for example a flashing light; this will result in a different brain pattern. He might ask you to close or open your eyes or look at specific thing, like an object or a picture. All of this will produce different patterns, It is rare to have a seizure during the test but people suffering from epilepsy might have one when reacting to the stimulus, but the chances of this happening are low.

    A test called polysomnography will be done if you are sleeping during the test; this is done to check bodily functions like the pulse or your breathing.

    For capturing seizure activity of patient suffering from epilepsy, the patient might undergo a test of 24 hours. The EEG uses video for recording seizure activity. Any abnormalities that didn’t occur during the test become apparent during the EEG. These abnormalities are limited to seizure-related.

    After

    After the test is performed, the electrodes will be removed by the technician. Any residue left from the glue that was holding the electrodes in place can be removed by a nail polish remover at home. It is advised to have someone along when going for an EEG test as you might be given sedatives or if a patient is actively suffering from seizures, so that they can accompany you home. The prescribed medications which were stopped by the doctor before the test can be started to be taken again. The doctor, neurologist will look at the recordings of the brain activity. He will inform if there is any unusual activity that might suggest a problem with your brain. He may schedule an appointment to go over the results. If the brain activity is normal then it means you have no brain disorder.

    It is advised to discuss the results of the test with your neurologist. You should also write down any questions that you have in mind prior to the reviewing of the test. Make sure that you speak up and get the doctor to ask any queries regarding your results that you might be having difficulty understanding. Don’t leave any doubt.

  • EEG Primer - Part 2

    How is the EEG data interpreted?

    As the electrical activity produced by the brain is examined by the EEG equipment, we can interpret which areas of the brain are processing which information at a specific time.

    • Occipital lobe

    The occipital lobe makes sense of the visual information in order for us to understand it. It is responsible for processing visual information. If this part of the brain is damaged we would not be able to process the visual signals correctly.

    • Parietal cortex

    It is responsible for the processing of sensory information within seconds. If this part of the brain would be damaged, humans wouldn’t be able to feel sensations of touch.

    • Temporal cortex

    Just like the occipital lobe is responsible for processing visual information, the temporal lobe is responsible for processing auditory information. It revolves around hearing and listening and understanding and interpreting the information.

    • Frontal cortex

    This is where we form our personalities and become who we are. It is responsible for making decisions like what to wear or when to sleep and is also in charge for thinking and understanding something. It is essential for being able to speak fluently and meaningfully.

    Apart from where the electric movement generates from we can also analyze the frequencies which make the ongoing activity. At different states, the brain generates different frequency patterns.

    • Delta(1-4 Hz)

    This is primarily for examining how deep the sleep is. The stronger the delta rhythm, deeper the sleep will be.

    • Theta(4-7 Hz)

    This is related with cognitive tasks like recalling memory and difficult tasks, for example what you ate 3 days back or reading the alphabet backwards.

    • Alpha (7-12 Hz)

    It is associated with the state when we are relaxed but drowsy. It coordinates multi sensory processing, attention and concentration.

    • Beta (12-30 Hz)

    It is related with body movements, when we anticipate or even notice body movements. These become stronger as we plan to execute any movement.

    • Gamma (30-50 Hz)

    Gamma frequency is associated with attentive focusing and serves as carrier frequency to facilitate the exchange of data between different brain regions.

    Analyzing the EEG (Electroencephalogram) data, can be quite challenging. Examining the data, in order to extract and indentify information requires expertise and experience.

    USES OF EEG (Electroencephalogram)

    Why is it performed?

    An EEG is performed to check if there are any problems in the electrical activity of the brain which may be related to specific brain disorders. The values and measurements used by an EEG are used to either confirm or to take out the following conditions:

    • Dementia: it is related to symptoms like loss of memory and reduced thinking skills resulting difficulty in performing daily activities.
    • Stroke: stroke is a condition where the brain stops functioning properly due to the lack of blood flow or due to bleeding.
    • Head injury: any type of injury to the brain, skull or scalp. It could either be a mild bump of a traumatic brain injury which results to some sort of damage.
    • Seizure disorders (epilepsy): seizure refers to a sudden rush of electrical brain activity. Epilepsy is a chronic disorder with unprovoked seizures.
    • Brain tumors: tumors can either be malignant or benign. A tumor is a mass of tissue formed by the collection of abnormal cells.
    • Sleep disorders: this includes sleep apnea, narcolepsy, cataplexy and sleeping sickness.
    • Memory problems: this is related to Alzheimer in which memory is affected. The thinking, reasoning and memory skills are reduced.
    • Encephalopathy: it is a brain disease, damage or malfunction

    EEG can also be performed on people that are in coma. Their brain activity can be tested in order to see if there is any progress or improvement in the individual. The test can also be done during brain surgery so that brain activity is monitored.

  • Focus Safety Video

    Please watch the following video to review tDCS contraindications.

  • Configure Your EEG Dev Kit using configure.dk & foc.us/me

    In this two minute video learn how to configure the WiFi on your foc.us EEG Dev Kit  using configure.dk

     

  • Glossary of Neuroscience Terms

    The foc.us "to do" list is very, very long.

    Some items have been on it for a very, very long time.

    One task was to create a glossary of neuroscience terms which has now been started.

  • focus Blog Has Moved (again!)

    The first foc.us blog lived on tumblr. Tumblr was fun and posting was easy, but it didn't integrate too well with the focus store.
    So we stopped using tumblr and switched to a magento blog extension. It was totally integrated with the store, but was horrible to use. Nobody liked writing in it, which is kinda the point of a blog.

    So now we have moved to Wordpress. Hopefully this will give us an integrated fun to use blog platform enabling us to share more info about tDCS, EEG and the goings-on at foc.us towers.

  • tDCS Placements 10/20 Guide

    UK Customers can order Focus Go Flow Pro from Amazon. Great if you are an Amazon Prime customer!

    Heres the link:

  • Achieve Sporting Prowess with Foc.us Brain Stimulation

    Sporting excellence is achieved through years of dedicated practice. Whether you're trying to increase the curve on your free kicks or perfect your golfing swing, you will spend hours repeating the actions over and over again until you can execute them with the precision you need. But we all know that it's not just your body that you need to train. You also have to train your mind. It's your mind that controls your bodily actions. And training your mind involves fine-tuning all the pathways in your brain that control those actions.

    The perfect golf swing requires carefully coordinated movement

    Every time you practice your swing, your brain gets feedback on how well it turned out. That feedback let's your brain make tiny adjustments in the strength of connections between brain cells that in turn make tweaks to the way you execute that swing. This means you are strengthening the pathways that led to success and weakening the ones that didn't.

    It's when you're making these tiny adjustments that brain stimulation can help. Stimulating your brain isn't going to let you suddenly bend it like Beckham or wallop it like Bale. You're not going to suddenly hit a hole-in-one when you've only just started playing golf a couple of weeks ago. Don't believe anyone who tells you something like that. But the evidence so far suggests that it can help you make those small changes that have big effects.

    The way brain stimulation does this is by increasing what neuroscientists call the plasticity of the connections between brain cells. Which – translated into language you and I can understand – means your brain's ability to do things slightly differently to the way it's done things so far; or in other words, it's ability to shift out of ingrained, habitual, behaviour. As the tiny charges enter the brain they come to rest on brain cells, including on the cells’ axons that transmit messages. This alters the amounts of charge that naturally resides on the axons and makes it either easier or more difficult (depending on the type of charge applied) for the brain cell to transmit messages along those axons. It also makes it easier or more difficult for the brain cell to pick up a messages from other cells connected to it. The volume of messages a brain cell sends out along its axons to other brain cells, and how many of those messages are actually picked up, dictates how strong the connections between brain cells become. The more the messages the stronger the connections, the fewer the messages, the weaker they become.

    One way to think of this is that the added current randomly fuzzes up the established connections between brain cells. Kind of like giving your brain cells a bit of a shake. When you do this, they are more easily able to fall in (and out) of a preferred pattern of connection. And when your brain is primed like this, you are primed and ready to tweak and fine-tune your performance. Which is exactly the state you want to be in when you want to practice those sporting moves!

    So that's enough of the background. How do we do it?

    The Things you'll need

    A brain stimulation device

    You're not going to get far without one of these! If you're not in the market for research grade equipment (which could set you back thousands of dollars), the next best thing is the Foc.us V2. It's packed with features and supports both transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS), as well as less known protocols such as random noise stimulation (tRNS).

    If the Foc.us V2 is still too much for you, you can buy the Foc.us Go Flow. This shares a lot of the circuity of the V2 but is limited to Direct Current Stimulation. So it can actually do everything that Halo headphones can do – except play music, of course. For that, you'll need your Dr Dres – or whatever brand you prefer.

    You may want to start with the basics of the Go Flow and when you're a more advanced user, ready for a fine-tuned approach to brain stimulation (look for our future posts on that), you might consider upgrading to the V2. In any case, for the purposes of the techniques we're about to discuss, you only need Direct Current Stimulation. So the Go Flow would do just fine.

    Electrodes and Head Fixture

    There are plenty of choices here. The Foc.us stimulator will work with different types of electrodes, and Foc.us offers it's own versions. You can choose sponge electrodes or sticky electrodes. The sponge ones generally work better and unless you are going to place your electrodes super accurately, you are better off sticking with a Foc.us head band or cap. Regarding accuracy of placement, bear in mind that the stimulation electrodes tend to be quite large. So obsessing over millimetres isn't worth it. I'm not saying that accurate placement isn't important, it is. But the truth is that no one really knows exactly the arch of the current as it enters your brain. Scientists are still working it out. We have some models, but their veracity is yet to be proved. What's more, ideal positioning will vary slightly from person to person. So the best thing is to carefully explore what's best for you.

    The Foc.us cap is by no means as accurate as a research-grade cap (Foc.us are trying to improve that), but used carefully it will help place electrodes accurately enough for the beginner.

    The other alternative is the Foc.us headband. This can be oriented in different ways to get the electrodes in the right position. For some montages, it works very well. For others it doesn't. And for what we're describing here, you're really better off with a Foc.us cap orsomething completely different like the many headstraps offered by other manufacturers or even something you might make at home.

    Highly accurate electrode placement becomes more important when you are applying advanced protocols such as HD-tDCS (more on that in future posts) where the electrodes and currents themselves are much smaller exactly because the aim is to produce more controlled and targeted effects.

    How to Stimulate Your Brain

    We're going to describe a two stage process which uses only transcranial Direct Current Stimulation (tDCS). In the training phase, you will prime your motor cortex to learn and fine tune the actions involved in your chosen sport, whether that's taking a penalty or putting a golf ball. Then in the competition stage you will suppress your brain's explicit conscious analysis so that you can more instinctively perform the actions you learnt in the training phase. This will involve two different brain stimulation protocols.

    Preparation - Preparing your electrode before a stimulation session.

    Carefully prepare your electrodes. Add about 9 grams of salt to about 100ml of water and shake thoroughly until completely dissolved. Soak the sponges in the solution. It's important to not over soak them. If solution is dripping off the electrodes, then you've added too much. Current flows through the saline solution, so if it leaks off, the current will flow through a broader area than intended. Conversely, do not under soak the sponges. You don't want the sponges to dry out or have any dry patches; these may lead to skin burns. You want to add as much water as the sponges will bear without excessive dripping. Some dripping is inevitable if the sponges are squeezed. But they shouldn't drip under mild pressure as you attach them to your head.

    Training – Electrode placement, current and duration

    The anodal (+ve) electrode should be placed over the motor region of the brain. The motor cortex is a thin band of neocortex that runs over the top of your head, approximately from ear to ear.

    If you're using a Foc.us head band or cap it should be fairly easy to place your anode in the right position – make sure that it sits above your left ear and slightly toward the back your head. The image below shows the motor strip in red.

    If you want to train your left-handed or left-footed swing or kick, this should be the other way around (over right motor cortex). You place your electrode on the opposite side because the right-hand side of the body is controlled by the left motor cortex and vice versa.

    Position the cathode on the shoulder opposite the anode. So if you want to train right-hand or right-foot actions and your anode is over left motor cortex, your cathode would go on your right shoulder; and if you want to train left-hand or left-foot actions and your anode is over right motor cortex, the cathode would go over your left shoulder.

    Set your current to 1mA and stimulate for 20mins. It's important not to go over time or over current. More is not necessarily better. Research suggests that higher currents or longer durations can in some cases have the reverse effect.

    When to stimulate and how often

    These are still early days in brain stimulation, so stimulation protocols used in research vary. Some will stimulate just before training and some during. Which one of these two you choose might have an impact, but it is still unclear to what degree and the differences are likely to be small. So you'll be fine if you choose a protocol on practical grounds.

    In any case, you should try to leave as little time as possible between stimulation and doing your training. The neural priming that results from applying current to the brain lasts for some time, but will slowly dissipate at a rate that is dependent on your environment and activity, as well as the duration of the stimulation. Hence the need to take advantage of the priming as quickly as possible after stimulation.

    If you're practising your golf putting, you could probably wear the headset during practice. On the other hand, if you're engaging in a contact sport, such as rugby or football, you might risk dislodging the headset and interrupting the stimulation session. Interruption of the stimulation session should be avoided. Don't fret about a few seconds here and there, but it is important to get the right dose, as we've said.

    The training phase of stimulation can be repeated every few days. Some studies have stimulated daily but it's still unknown what's optimal (or safe) and it may vary person to person or on the desired goal. We would recommend it's best to leave 48 hours between stimulation sessions for a good safety margin. This gives your brain a chance to recover in just the same way as your body does after training.

    For those of you who want to read a little from the source science, here's a very recent paper that uses this approach and here's a slightly older review of several studies.

    Competing – Electrode placement, current and duration

    When you are about to compete, all your learning is done and you just want to get into that zone. You want suppress all distracting thoughts, including those that monitor how well you're doing, and focus on putting all your training into practice. With motor actions this involves quietening your conscious chatter. Here's how you do it.

    Place the cathode (-ve) over the left dorsolateral prefrontol cortex (DLPFC) and the anode (+ve) over the right supraorbital region. Under the 10-20 labelling system these positions are referred to as F3 (cathode) and FP2 (anode). If you have a Foc.us 10-20 cap, the positions will be marked. FP2 is on your forehead above your right eye, but some distance from it. Don't put the electrode too close to your eyes or you may experience some small white flashes called phosphenes. These aren't particularly dangerous but can be uncomfortable and alarming. If you place the electrode in the middle of the line from the centre of your eyebrow to your hairline, it should be about right.

    Finding F3 is a little harder without the cap. It is situated over your left temple slightly into the hairline and about an inch towards the top of your head. Check here if you're in doubt and watch the positions being marked.

    Left-handers should do the same because, unlike motor functions, the primary region that consciously monitors the self and causes conscious chatter is not dependent on handedness.

    Stimulation should be at 1.5mA for 15 minutes just before you compete. Again, you should try to leave as short an interval as possible between stimulation and competing.

    Now, just because your conscious self-monitoring is turned down a little, doesn't mean you can't learn. As we all know, competing is one of the best ways to improve! And in a similar way, some research has shown that we can acquire and improve implicit learning when we are in this state. If you're interested in reading more, you can read this study.

    tDCS Saftey

    Transcranial Direct Current Stimulation is generally well tolerated by the majority of people and despite hundreds of thousands of trials, very few cases of adverse effects have been reported. But it's important to remember that these trials were generally performed well within conventional safety parameters and this caution may be the underlying reason for so few cases of deleterious effects.

    Hence it's important to always follow good safety protocols. Don't combine brain stimulation with any other drugs including alcohol. Avoid strong painkillers and don't have too much coffee. If you're particularly tired or likely to be in an unfamiliar situation, administer it with caution. If you feel any discomfort or disorientation at any time, discontinue the stimulation immediately - don't tough it out to the end! It just doesn't work like that.

    However, never suddenly pull off the electrodes. Depending on your equipment, this can cause a sudden current spike. The correct thing to do is to hit the safety switch on your stimulation device. With a V2, you can just shake it. With the Go Flow, you can press the main rocker button at any time during a stimulation session and it will ramp down and shut off. If you're using another manufacturer, check the instructions for a termination switch. If it doesn't have this feature, I would recommend that you use another brand.

    Foc.us products all come with a list of warnings which err on the side of caution.just

    If you're thinking of trying tDCS, you should at the very least read these warning from scientists. If you read that and think it sounds pretty uncategorical, you'd be right. The truth is, as we've said, these are early days and no body is completely sure about what tDCS does and how exactly it works. There's a lot that scientist know, but there's a lot they don't and there is a great deal of controversy within science itself. Watch out for future post where I will try to make sense of what we really know and what don't.

    In the meantime, it's worth remembering that people respond very differently to tDCS. Some feel dramatic changes and some feel nothing at all. Your mood, environment and even your level of caffeination can change how you experience it. Always go slow and be safe.

  • Go Flow Pro available from Amazon.co.uk

    UK Customers can order Focus Go Flow Pro from Amazon. Great if you are an Amazon Prime customer!

    Heres the link:

Items 11 to 20 of 59 total

Page:
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
Post your comment

foc.us